Marks

BUSINESS MATHEMATICS & STATISTICS – STAGE-2

Q.2 (a)

$$\frac{x \, \blacksquare \, 6}{5} - \frac{2x - 1}{2} \, = \, 3$$

Multiply by 10

$$2(x +6) - 5(2x - 1) = 30$$

$$2 x + 12 - 10x + 5 = 30$$

$$- 8 x = 30 - 12 - 5$$

2.0

x = -13/8 Ans

-8x = 13

2.0

(b) The total weekly revenue equations for the two products are:

$$R_1 = (130 - 2 x) x = 130x - 2 x^2$$

$$R_2 = (320 - 4y) y = 320y - 4 y^2$$

G =
$$R_1 + R_2 - C$$

= $130x - 2x^2 + 320y - 4y^2 - (40x + 2xy + 2y^2 + 2000)$
= $90x - 2x^2 + 320y - 6y^2 - 2xy - 2000$

The partial derivative are

$$\frac{6G}{6x} = 90 - 4x - 2y$$
 $\frac{6G}{6y} = 320 - 12y - 2x$

For the maximum profit, we need to find the stationary point of the function, for which the partial derivatives are equated to zero. Thus

$$90 - 4x - 2y = 0$$
 then $4x + 2y = 90$ ------ Eq. (1)

$$320 - 12y - 2x = 0$$
 then $2x + 12y = 320$ ----- Eq. (2)

By simultaneously solving equation (1) & (2) we have

$$x = 10 & y = 25$$

Now we can calculate the weekly profit with the help of profit equation:

G =
$$90 \times -2x^2 + 320 \text{ y} - 6y^2 - 2xy - 2000$$

= $(90 \times 10) + 2(10)^2 + 320 \times 25 + 6(25)^2 + 2 \times 10 \times 25 + 2000 = \text{Rs. } 2,450$

Conclusion: A maximum profit of Rs. 2,450 is produced when 10 units of the first Product 0.5 and 25 units of the second product are produced weekly.

(c)
$$a=? a_n = 900,000 S_n = 6,500,000 n = 10$$

$$a_n = a + (n - 1)d$$
 0.5

$$900,000 = a + (10 - 1) d$$
 or $900,000 = a + 9d$ ------Eq.(1) 1.0

BUSINESS MATHEMATICS & STATISTICS - STAGE-2

	BOSINESS MATHEMATICS & STATISTICS - STAGE-2		Marks
5	$S_n = n/2 \{2a + (n-1)d\}$		0.5
or	6,500,000 = 5{2a + 9d} or 1,300,000 = 2a + 9d	Eq. (2)	1.0
В	simultaneously solving equation (1) & (2) we have	,	
-	= 400,000 d = 55,555.55		1.0
In	tial Salary is Rs. 400,000 p.a.		1.0
Q.3 (a) (i)	Units to be Produced:		
	Revenue = $R = f(q) = pq$		0.5
	$q = 100,000 - 200p \implies p = 500 - 0.005q$		
	R = (500 - 0.005q)q		
	$= 500q - 0.005q^2$		1.0
	Profit = $P = f(q) = R - C$		0.5
	$P = 500q + 0.005q^2 - (150,000 + 100q + 0.003q^2)$		
	$P = -0.008q^2 + 400q - 150,000$		2.0
	1. Find First Derivative)	
	$P^{L} = -0.016q + 400$	}	1.0
	2. Take $P^u = 0$ and find q		
	q = 25,000	J	
	3. Find 2 nd Derivative		
	$P^{EE} = -0.016$		
	4. Find P [®] (25,000)		
	Since P [™] (25,000) = -0.016 < 0		1.0
	Profit of the firm is Maximize when 25,000 units are produced each year.	J	
(ii	Price to be Charged:		
•	p = 500 - 0.005q = 500 - 0.005(25,000)		1.0
	= Rs. 375		1.0
(ii	i) Annual Profit Expected to Equal:		
·	$P = -0.008q^2 + 400q 150,000 = -0.008 (25,000)^2 + 400 (25,000) 150,000$		1.0
	= Rs. 4,850,000		1.0

BUSINESS MATHEMATICS & STATISTICS – STAGE-2

(b)
$$P = 50,000$$
; $A = 140,000$; $n = 8$ Years = 32 Quarters; $i = ?$

A $= P(1 + i/m)^{mn}$ 1.0

$$140,000 = 50,000(1 + i/4)^{32}$$

$$2.8 = (1 + i/a)^{32}$$

$$Log 2.8 = 32 log (1 + i/4)$$

$$0.447158 = 32 log (1 + i/4)$$

$$1 + i/4 = 4,0327$$

$$1/4 = 1.0327 - 1$$

$$1/4 = 0.032707 3.27\% \text{ per quarter or}$$

$$1 = 13.08\% \text{ per an rum}$$

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 2 & 3 & 3 \end{bmatrix}$$

$$A = -3(3 - 0) + 1(3 - 2) = -9 + i = -8 \text{ Non Singular Matrix Inverse Exits}$$

$$A11 = +(3 - 0) = 3$$

$$A21 = -(9 - 3) = -6$$

$$A32 = +(0 - 2) = -2$$

$$A32 = -(0 - 1) = 1$$

$$A33 = +(0 - 1) = -1$$

$$A43 = -3 = -3 = -2$$

$$A43 = -3 = -3 = -2$$

$$A44 = -3 = -3 = -2$$

$$A3 = -3 = -3 = -3$$

$$A3 = -3 = -3 = -3$$

$$A43 = -3 = -3 = -3$$

$$A44 = -3 = -3 = -2$$

$$A3 = -3 = -3 = -3$$

$$A45 = -3 = -3 = -3$$

$$A46 = -3 = -3 = -3$$

$$A3 = -3 = -3 = -3$$

$$A47 = -3 = -3 = -3$$

$$A18 = -3 = -3 = -3$$

$$A18 = -3 = -3 = -3$$

$$A18 = -3 = -3 = -3$$

$$A19 = -3$$

Marks

BUSINESS MATHEMATICS & STATISTICS - STAGE-2

Q.4 (a) (i) With replacement:

P(K
$$\triangle$$
 A) = P(K) P(A)
= $\frac{4}{52} \times \frac{4}{52}$
= $\frac{1}{160}$ 2.0

(ii) Without replacement:

P(K A) = P(K) P(A)
=
$$\frac{4}{52} \times \frac{4}{51}$$

= $\frac{4}{663}$ 2.0

(b)
$$p = 0.5, q = 0.5, n = 10, x = 5$$
 1.0 $b(x::n,p) = {}^{n}Cx p^{x} q^{n-x}$ 1.0 $b(5:10,5) = {}^{10}C_{5} 0.5^{5} 0.5^{5}$ 1.0 $= 252 \times 0.03125 \times 0.03125$ 1.0 $= 0.24609$ 2.0

Q.5 (a) n=10, Sample Mean
$$x = 65$$
, $s^2 = 20$ Find 98% Confidence Interval for μ 1.0

Confidence Interval for mu

$$t_{a/2} = t_{0.01,9} = 2.821$$
 $\overline{x} \pm t_{a/2} \text{ s/Nn}$
 1.0

 $65 \pm 2.821 \times 4.472/N10$
 1.0

 65 ± 3.989
 1.0

 $61.011, 68,989$
 1.0

 $61.011 < \mu < 68.989$
 1.0

BUSINESS MATHEMATICS & STATISTICS - STAGE-2

Marks

2.0

(b)

х	у	ху	x ²	y²
50	22			
54	25			
56	34			
60	28			
62	26			
61	30			
65	33			(
408	198	11,621	23,942	5,714

Coefficient of Correlation = r =
$$\frac{n \sum xy - \sum x \sum y}{\sqrt{(n \sum x^2 - (\sum x)^2)(n \sum y^2 - (\sum y)^2)}}$$
 0.5

$$= \frac{7x11621 - 408x198}{\sqrt{(7x23942 - 408^2)(7x5714 - 198^2)}}$$

Positive (Direct) and Moderate relationship exits between marks obtained in Statistics And Economics by the students.

Marks

BUSINESS MATHEMATICS & STATISTICS - STAGE-2

Q. 6 (a) 4.0

(b) Possible path Duration

(c) Slope = Crash Cost - Normai Cost Normal Days - Crash Days

> 1/3 1/3 1/3 1/3

1.0

1/3 1/3

Activity (i,j)	Slope (Rs. 000 / Day)
(1, 2)	50
(1, 3)	100
(2, 4)	40
(2, 5)	60
(3, 4)	25
(4, 5)	10

BUSINESS MATHEMATICS & STATISTICS - STAGE-2

										Marks
Q. 7	Ma	aximis	se	6x +	8y +	- 7z				
				2x +	y +	4z +	$S_1 = S_2 = S_3 = S_3$	100		2.0
		Tab	leau	#1						
		X	У	Z	S ₁	S_2		р	50	
		3 2 1	1	1 4	1 0	0 1		0 0	50 100	0.0
		1	2	4 2 -7	0 0 0	0 0	1 (0	80	2.0
		-6	-8	-7	0	0	0 1	1	0	
			leau		0	0				
	S ₁	x 2.5	у О	z 0	S₁ 1	S ₂ 0	S₃ -0.5	р 0	10	3.0
	S_2	1.5	0	3	0	1	-0.5	0	60	3.0
	y z	0.5 -2	1 0	1 1	0 0	0 0	0.5 4	0 1	40 320	
		-2	U	'	U	U	7	ľ	0/20	
		Tab	leau	#3						
	v	х 1	у О	z 0	S₁ 0.4	S_2	S ₃ -0.2	р 0	\forall	
	S_2	0	0			0 1	-0.2	V ₀	4 54	3.0
	У	0	1	1	-0.2	0	0.6	0	38	
	Z	0	0	1	0.8	0	3.6	1	328	

THE END