1 of 8

Q.2 (a)

(b)

(c)

Simplify
$$\frac{1}{2}x^{2}y^{2}x^{2}y^{2}x^{2}y^{3/2} + (x^{7/4}y^{2/4}x^{1/4}y^{6/4})$$

= $(x^{2}y^{4}) + (x^{2}y^{2})$
= y^{2}
Solve the following equation $\frac{x \blacksquare 6}{5} - \frac{2x - 1}{2} = 3$
Multiply by 10 on both sides
 $2(x+6) - 5(2x - 1) = 30$
 $2x + 12 - 10x + 5 = 30$
 $- 8x + 17 = 30$
 $- 8x = 13$
 $x = -13/8$
1.0
 $x + y + z = 400,000$ ------(1)
 $0.1x + 0.07y + 0.08z = 32,000$ ------(2)
 $y + z = 3x$
 $-3x + y + z = 0$ ------(3)
Multiply equation (1) by 0.1 and subtract equation (2)

Multiply equation (1) by 3 and add equation (3)

Multiply equation (5) by 0.03 and subtract equation (4)

Put z in equation 5 we have:

By putting y & z in equation (1) we have:

2 of 8

		Marks
; (a)	$f(x) = x^2 + 5x + 6$	
	$f^{t}(x) = 2x + 5$	1.0
	$f^{\epsilon}(x) = 0$	1.0
	2x + 5 = 0	
	x = -5/ 2	1.0
	$f^{ii}(x) = 2$ is positive	1.0
	hence at $x = -5/2$ is minima	1.0
(b)	R = ? , Sn = 600,000 , n = 8 years = 32 quarters —	
	I = 10% p.a. = 0.025 per qtr	2.0
	Sn = R {(1 + i) ⁿ – 1 }/i	
	$600,000 = R \{(1 \div 0.025)^{32} - 1 \}/0.025$	1.0
	R= 12,460.98	2.0
(c)	$f(x) = \frac{6x^2 + 3x - 5}{\ln (5x^2 + 4)}$	
	$f^*(x) = \frac{vu' \blacksquare uv'}{v^2}$	<u>1.0</u>
	$f^{t}(x) = \frac{\ln (5x^{2} + 4)(12x + 3) - (6x^{2} + 3x - 5)\{10x/(5x^{2} + 4)\}}{\{\ln (5x^{2} + 4)\}^{2}}$	<u>0.5+0.5</u> 0.5
	$= (12x + 3)\ln (5x^{2} + 4) + 10x (6x^{2} + 3x + 5)/(5x^{2} + 4) {\ln (5x^{2} + 4)}^{2}$	

$$= \frac{(5x^{2} + 4)(12x + 3)\ln(5x^{2} + 4) - 10x(6x^{2} + 3x - 5)}{(\ln(5x^{2} + 4))^{2}(5x^{2} + 4)} \qquad \qquad \underbrace{0.5+0.5}{0.5}$$

(d)

)	P= 200,000,A = 1,000,000	Marks 1.0
	$A=P(1 + i)^n$	1.0
	$1,000,000 = 200,000 (1 + i)^{32}$	
	$5 = (1 + i)^{32}$	1.0
	Log 5 = 32 log (1 + i)	1.0
	0.69897 = 32 log(1 + i)	
	0.02184 = log (1 + i)	1.0
	1 + i = 1.051581	
	i = 0.05158 or 5.158 % per quarter or 20.33% per annum	1.0

DECEMBENT The suggested answers provided on and made available through the Institute's website may only be referred, relied upon or treated as a guide and substitute for professional advice. The Institute does not take any responsibility about the accuracy, completeness or currency of the information provided in the suggested answers. Therefore, the Institute is not liable to attend or receive any comments, observations or critics related to the suggested answers.

SECTION B

Q4 (a) Population: 2, 4, 6, 8 and 10

Population Size = N = 5

Sample Size = n= 2

Maximum no. of Samples can be drawn = ${}^{N}P_{n} = {}^{5}P_{2} = 20$

Sample	Sample Mean
(2, 4)	3
(2, 6)	4
(2, 8)	5
(2, 4) (2, 6) (2, 8) (2, 10) (4,2)	6
(4,2)	3
(4,6)	5
(4,8) (4,10)	6
(4,10)	7
(6,2)	<u> </u>
(6.4)	5
(6,8) (6,10) (8,2) (8,4)	7
(6,10)	8
(8,2)	5
(8,4)	6
(8.6)	7
(8,10)	9
(10,2)	6
(8,10) (10,2) (10,4) (10,6)	7
(10,6)	8
(10,8)	9

Sampling Distribution of Mean

Х	3	4	5	6	7	8	9]
F(x)	1/10	1/10	1/5	1/5	1/5	1/10	1/10]
Marks	0.5	0.5	0.5	0.5	0.5	0.5	0.5	3.5

(b) Min # = 10, Max # = 45, Range = 35

No. of Classes = 1 + 3.3 logn = 1 + 3.3 log 39 = 6.2 = 6

Class Interval = Range/No. of Classes = 35/6 = 5.83 = 6

Class Interval	Tallies	Frequency
10 – 15	###	5
16 – 21	++++ I	6
22 – 27	+++++ ++++	9
28 – 33	++++ II	7
34 – 39	++++ I	6
40 – 45	++++ I	6

LISCRAMENT: The suggested answers provided on and made available through the Institute's website may only be referred, relied upon or treated as a guide and substitute for professional advice. The Institute does not take any responsibility about the accuracy, completeness or currency of the information provided in the suggested answers. Therefore, the Institute is not liable to attend or receive any comments, observations or critics related to the suggested answers.

1.5

Marks

Marks

Marks obtained	No. of Students f	x	fx	Class Boundaries	<cf< th=""></cf<>
10 - 24	10	17	170		10
25 – 39	16	32	512		26
40 – 54	23	47	1081		49
55 - 69	29	62	1798		78
70 – 84	16	77	1232		94
85 - 99	6	92	552		100
Σ	N = 100		5345		

Arithmetic Mean = $\sum fx / N = 53.45$

0.5+0.5

0+1.0

Median =
$$I + h/f(N/2 - C)$$
 1.0

(d)

(c)

	$\mu = 15$, n = 10, $\sigma^2 = 50$	
	∑ x= 150,	0.5
	∑x (Corrected) = 150 -12 + 18 = 156	0.5
	μ (Corrected) = 15.6	0.5
	$\sigma^2 = \mathbf{X}^2/\mathbf{n} - \mu^2$	0.5
	50 = 承 x²/10 - 15²	

$$\tau^{2} = \sum x^{2}/n - \mu^{2}$$
 0.5

x² = 2750 1.0

$$\sum x^2$$
 (Corrected) = 2930 1.0

Marks

6 of 8

~ -	1-1	7:1
Q5	(a)	(i)

Marks	0.5	0.5	0.5	0.5
	335	4045	154,755	13,863
	45	515		
	55	565		
	40	490		
	50	440		
	30	475		
	20	465		
	25	395		
	22	420		
	48	380		
	Х	У	ху	x ²

2.0

- -

n = 9
$$x = 335$$
 $y = 4045$ $x^2 = 13,863$, $x = 154,755$

Where b =
$$\frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2}$$
 0.5

$$\frac{9x154,755-335x4045}{9x13,863-335^2}$$

$$a = \frac{\sum y}{n} - b \frac{\sum x}{n}$$
 0.5

$$= \frac{9x154,755 - 335x4045}{9x13,863 - 335^2}$$

$$= 3.0075$$

$$a = \frac{\sum y}{n} - b \frac{\sum x}{n}$$

$$= \frac{4045}{9} - 3.0075 \times \frac{335}{9}$$

$$= 337.498$$
1.0

Equation of the Regression line is:

(ii)
$$y = 337.498 + 3.0075 x$$

= 337.498 + 3.0075 (60)
= 337.498 + 180.45
= 517.948 1.0

Marks

										Mark
b) [Com	pn	ро	qn	qo	pnqo	poqo	pnqn	poqn	
	А	12.50	15.00	125	150	1875	2250	1562.5	1875	
-	В	30.00	40.00	160	185	5550	7400	4800	6400	
	С	75.00		140	165	12375	14041.5	10500	11914	
Ī	D	95.15	105.00	78	85	8087.75	8925	7421.7	8190	
						27887.75	32616.5	24284.2	28379	
					Marks	1.0	1.0	1.0	1.0	4.0
1 101101					=	∑ <u>pnqo</u> ∕∑poqo √27887.75	\sum poqn 5 x $\sqrt{2428^4}$	4.2 x100		1.0 1.0
						32616.5 85.53	X <u>X</u> 28379			2.0
)		Weight	: n = 10), Mean	= 278	grams S.D)= 9.64 gra	ms		
		Coeffic	ient of V	ariance/	e = SE	/Mean x 10	00			
	= 9.64/278 x 100									
					= 3.4					1.0
		Prices:	Prices: n = 10, Mean = \$ 1.29, S.D = \$ 0.09							
		Coeffic	ient of V	ariance/	e = SE)/Mean x 10	00			
					= 0.09/1.29 x 100					
					= 6.9	97%				1.0
	CV of Weight are less than CV of Prices								1.0	
		So wei	ghts are	relative	ely hon	nogenous v	w.r.t. prices	6.		1.0

		SUC	GGESTED ANSWERS – FALL 2012 (FEBRUARY 2013) EXAMINATIONS	8 of 8			
	BL	JSIN	ESS MATHEMATICS & STATISTICAL INFERENCE SEMESTER-2				
				Marks			
Q.6	(a)	(i)	The different moving averages produce different forecast.	0.5			
		(ii)	The greater the number of periods in the moving average, the greater the				
			smoothing effect.	0.5			
		(iii) If the underlying trend of the past data is thought to be fairly constant with					
			substantial randomness, then a greater number of periods should be chosen.	1.0			
		(iv)	Alternatively, if there is thought to be some change in the underlying state of				
			the data, more responsiveness is needed, therefore fewer periods should be	1.0			
			included in the moving average.				
	(b)	Ν	I= 52, n = 5 P(x ≤ 2) =?				
		Т	Total Possible Outcomes =52C5 = 2,598,9601	.0			
		F	avorable Outcomes = N (A = 2) or N (A = 1) or N (A = 0)				
			= 4C2 x 48C3 + 4C1 x 48C4 + 4C0 x 48C5 0.5+0	.5+0.5			
			= 6 x 17296 +4 x 194580 + 1 x 1712304				
			= 103776 + 778320 + 1712304 = 2594400 0.5+0.5	+0.5+0.5			

Probability = Favorable Outcomes/ Total Possible Outcomes 0.5 = 2594400/ 2598960

n=17, Sample Mean x = 50, s^2 = 36 Find 95% Confidence Interval for

 $\textbf{w} = 100 - 95 = 5\% = 0.05, \quad \textbf{t}_{\textbf{w/2}} = \textbf{t}_{0.025,16} = 2.120$

=

Confidence Interval for *µ*

=

(c)

x ± t_{e/2} s/Nn 1.0

$$x - t_{s/2} s/sn = 50 - 2.120 x 6/\sqrt{17}$$
 0.5

$$x + t_{s/2} s/n = 50 + 2.120 x 6/\sqrt{17}$$
 0.5

= 50 + 3.085 **0.5**

	THE END
) SCLAIMER	The suggested answers provided on and made available through the Institute's website may only be referred, relied upon or treated as a guide and substitute for
	professional advice. The Institute does not take any responsibility about the accuracy, completeness or currency of the information provided in the suggested answers.
	Therefore, the Institute is not liable to attend or receive any comments, observations or critics related to the suggested answers.