1.0

BUSINESS MATHEMATICS & STATISTICS STAGE-2

Q.2 (a)	$x^2 - 2x + x - 2 \ge 0$		Marks 1.0
	x(x-2) +1(x -2) ≥ 0		
	$(x-2)(x+1) \ge 0$		1.0
	If $(x - 2)(x + 1) = 0$	then $x = 2$ or $x = -1$	1.0
	If $(x-2)(x+1) > 0$ or $x > 2$	2 and x >-1 then x > 2 or	1.0
	If $(x-2)(x+1) > 0$ or $x < 2$	2 and x < -1then x < -1	1.0
	Solution: x 점 -1 or x 점 2	2	1.0
(b) Here, a	$a = 5 \frac{1}{2}$, $d = 4 - 5 \frac{1}{2} = 4 - 1$	1/2 = 8 - 11 / 2 = - 3/2 & n = 12	
	Formula: $S_n = n/2 \{ 2a + ($	(n-1)d}	1.0
	= 12 / 2 { 2 (11/ 2	2) + (12 1) (-3/2)}	
	= 6 { 2 × 11/2 +	11 × - 3/2}	
	= 6{11-33/2}	}	1.0
	= 6 { 22 - 33 / 2 }	}	
	= 6 { - 11/2 }		
	= 3 × -11		

= - 33 Ans

1.5

1.0

BUSINESS MATHEMATICS & STATISTICS STAGE-2

$$S = R - \frac{(1+i)^n - 1}{i}$$

$$S = 5000 - 1$$

$$0.06$$
1.5

$$S = 5000 \begin{array}{ccc} (1.06)^{10} & 1 \\ & & \\ 0.06 \end{array}$$

ALTERNATE METHOD:

(By using Table):

Data:

$$S = Rs_{n\parallel} I \qquad 0.5$$

$$S = 5000 s_{10|||} 0.06$$
 1.5

From table value:

$$s_{10} = 0.06 = 13.18079$$
 1.0

(d) (i)
$$[(x^3 + 4)^5 x^2 dx$$

$$= \frac{3}{3} [(x^3 + 4)^5 x^2 dx]$$

$$= \frac{1}{3} [(x^3 + 4)^5 3x^2 dx]$$
1.0

(Using the rule:
$$\|f(x)\|^n f''(x) dx = \frac{\|f(x)\|^{n+1}}{n+1} \|C \quad \text{when } n \text{ if } -1)$$

$$= \frac{1}{3} \sqrt{\frac{x^3 + 4}{5 + 1}} + C$$

$$= \frac{1}{3} \sqrt{\frac{1}{6} x^3 + 4} + C$$

$$= \frac{1}{18} \sqrt{x^3 + 4} + C$$

$$= \frac{1}{18} \sqrt{x^3 + 4} + C$$

$$1.0$$

$$f(x,y) = 3x^2 - 6xy + 4y^3$$

$$=\frac{1}{18}\left[k^3 + 4\right]^6 + C$$

(ii)
$$f(x,y) = 3x^{2} - 6xy + 4y^{3}$$

$$f_{x} = 6x - 6y$$

$$f_{xy} = 6$$
1.0

Q.3 (a) Here, the matrix form is

$$||A| = \begin{vmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 4 & 5 & 8 \end{vmatrix}$$

$$= 2 \begin{vmatrix} 2 & 3 \\ 5 & 8 \end{vmatrix} - 3 \begin{vmatrix} 1 & 3 \\ 4 & 8 \end{vmatrix} + 4 \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix}$$

$$||A| = 2(16 - 15) - 3(8 - 12) + 4(5 - 8)$$

$$||A| = 2(1) - 3(-4) + 4(-3)$$

$$||A| = 2 + 12 - 12$$

$$||A| = 2$$
1.0

Since A = 2, therefore the above matrix is non-singular, the solution does exits. 1.0

Let
$$\begin{bmatrix} A_1 \end{bmatrix} = \begin{bmatrix} 20 & 3 & 4 \\ 14 & 2 & 3 \\ 38 & 5 & 8 \end{bmatrix}$$

$$\begin{bmatrix} A_1 \end{bmatrix} = 20 \ (16 - 15) - 3 \ (112 - 114) + 4(70 - 76)$$

$$= 2$$

$$\begin{vmatrix} A_2 \end{vmatrix} = \begin{vmatrix} 2 & 20 & 4 \\ 1 & 14 & 3 \\ 4 & 38 & 8 \end{vmatrix}$$

$$|A_2|$$
 = 2 (112 - 114) - 20 (8 - 12) + 4(38 - 56)

$$= 2 (-2) - 20(-4) + 4(-18)$$

$$= -4 + 80 - 72$$

Let
$$||A_3|| = \begin{vmatrix} 2 & 3 & 20 \\ 1 & 2 & 14 \\ 4 & 5 & 38 \end{vmatrix}$$

$$||A_3|| = 2(76 - 70) - 3(38 - 56) + 20(5 - 8)$$

= 2(6) 3(-18) + 20(-3)
= 12 + 54 - 60
= 66 - 60
= 6

Now,
$$X_1 = |A_1| |A| = 2/2 = 1$$

and
$$X_3 = ||A_3||| ||A|| = 6/2 = 3$$
 1.0

Therefore, the solution is

$$X_1 = 1$$
, $X_2 = 2$ and $X_3 = 3$

(b) As $x_1 = Number$ of litres sold of regular

 x_2 = Number of litres sold of premium

(i) Total revenue from the sale of the two different grades of petrol

$$R = f(x_1, x_2) = p_1 x_1 + p_2 x_2$$
 0.5

OR R=
$$f(x_1, x_2) = 70x_1 + 80x_2$$
 1.5

(ii) Total cost = total fixed cost + total variable cost 0.5

Here, total fixed cost =
$$0$$

$$C = f(x_1, x_2) = 55x_1 + 70x_2$$
 1.0

(iii) Total profit = total revenue - total cost

$$P(x_1, x_2) = R(x_1, x_2) - C(x_1, x_2)$$

 $P(x_1, x_2) = (70x_1 + 80x_2) - (55x_1 + 70x_2)$

$$P(x_1,x_2) = 70x_1 + 80x_2 - 55x_1 - 70x_2$$

$$= 15x_1 + 10x_2$$
 1.0

(iv)
$$P(x_1, x_2) = 15x_1 + 10x_2$$

$$P(80,000, 30,000) = 15(80,000) + 10(30,000)$$

$$= 1,200,000 + 300,000$$

$$= Rs.1,500,000$$
1.0

(c) (i)

$$h = f(t) = 3.5 t^3$$
 $0 \le t \le 30 sec$

Average velocity during the time interval ¹0 ≥ t ≥ 15 sec

$$= \frac{3.5 (15)^3 \quad 3.5 (0)^3}{15}$$
0.5

Their for:

(ii) To find Instantaneous velocity differentiating w.r.t on both sides

$$\frac{dh}{dt} = \frac{d (3.5 t^3)}{dt}$$

$$\frac{dh}{dt} = 3 (3.5 t^{3-1}) = 3 (3.5 t^2) = 10.5 t^2$$

$$\frac{dh}{dt} = 3 (3.5 t^{3-1}) = 3 (3.5 t^2) = 10.5 t^2$$

At t = 15 sec

$$\frac{dh}{dt} = 10.5(15)^2 = 2,362.5 \text{ ft / sec}$$

$$\frac{dh}{dt} = 10.5(15)^2 = 2,362.5 \text{ ft / sec}$$

At t = 20

$$\frac{dh}{dt} = (10.5 (20)^2) = (10.5)(400)$$

Q.4 (a)

Year	Annual Values	5-Yearly Total	Trend
1987	240	-	-
1988	270	-	-
1989	238	1257	251
1990	252	1267	253
1991	257	1280	256
1992	250	1312	262
1993	283	1328	266
1994	270	1351	270
1995	268	1385	277
1996	280	1412	282
1997	284	1442	288
1998	310	1477	295
1999	300	1495	299
2000	303	1524	305
2001	298	1554	311
2002	313	1563	313
2003	340	1589	318
2004	309	1624	325
2005	329	1638	328
2006	333	1683	337
2007	327	1718	344
2008	385	1732	346
2009	344	-	-
2010	343	-	-

(b) (i)

$$r = 6$$

$$p_r = {}^6p_2$$

$$= \frac{n!}{[n-r]!}$$

0.5

$$= \frac{6!}{4!}$$

$$= \frac{6 \boxtimes 5 \boxtimes 4!}{4!} = 6 \boxtimes 5$$

0.5

1.0

$$p = 1/6$$
 q =

$$p = 1/6$$
 $q = 1 \cdot \frac{1}{6} = \frac{5}{6}$

$$x = 4$$

0.5

0.5

1.0

Required probability = b(x;k;p)

= b(4;6;1/6)

$$= \frac{6}{4} \left[\frac{1}{6} \right]^{4} \left[\frac{5}{6} \right]^{6-4} = \frac{6!}{4! \left[6 - 4 \right]} \left[\frac{1}{6} \right]^{4} \left[\frac{5}{6} \right]^{2}$$

$$=\frac{6 \boxtimes 5 \boxtimes 4!}{4!2!} \boxtimes \frac{1}{1296} \boxtimes \frac{25}{36} = \frac{6 \boxtimes 5 \boxtimes 4!}{4! \boxtimes 2 \boxtimes 1} \boxtimes \frac{1}{1296} \boxtimes \frac{25}{36}$$

$$= 15 \bowtie \frac{1}{1296} \bowtie \frac{25}{36} = \frac{375}{46656}$$

Q.5 (a) This is a one-tail test as we are only interested in whether the mean weight is less than the nominal or not.

$$H_0$$
: mean = 500 grams **0.5**

H₁: mean < 500 grams

Degrees of freedom = n - 1 = 16 - 1 = 15

0.5

0.5

Data:

$$n = 16,$$

$$\bar{x} = 495 \text{ grams},$$

$$s = 15$$
,

Level of Significance = 0.05

Standard error of the mean =
$$\frac{s}{\sqrt{n}} = \frac{15}{\sqrt{16}} = 3.75$$
 0.5

Therefore
$$t = \frac{\bar{x} - 24}{s_{\bar{x}}} - \frac{|495 - 500|}{3.75} - 1.33$$

โลธินiated value of ็t is 1.753

1.0

0.5

Thus as the calculated t score, 1.33, is less than 1.753 we can accept the null 1.0 hypothesis and reject the alternative hypothesis at the 5% level.

$$n = 7$$
 and $r = 5$

$${}^{n}\mathbf{C}_{r} = \frac{n!}{r! [n-r]!}$$

$$= \frac{7!}{5! [7-5]!}$$

$$= \frac{7!}{5! \mathbf{z} 2!}$$

$$= \frac{7 \mathbf{z} 6 \mathbf{z} 5!}{5! \mathbf{z} 2 \mathbf{z} 1}$$

$$= 7 \times 3$$

$$0.5$$

(ii) A: 1st card is an ace

J: 2nd card is a jack

Now
$$P(A) = 4/52$$
 0.5

$$P(J/A) = 4/51$$
 0.5

Hence

$$P(A \mathbf{T} J) = P(A) P(J/A) = 4/52 \times 4/51 = 2/26 \times 4/51$$
 1.0

$$P(ATJ) = 8/1326$$
 1.0

Q.6 (a)

(0.5 mark for drawing of each correct activity e.g. 0.5 mark for drawing of:

(c) EST and LST:

Activity	EST	LST	
Α	0	0	
В	0	0	
С	0	0	
D	5	7	
E	7	7	
F	7	7	
G	10	10	
Н	12	12	

0.5

BUSINESS MATHEMATICS & STATISTICS - STAGE-2

Q.7 (a) Let x_1 : Number of kg of ingredient of type A

The Total Minimum Cost is Rs. 1040

x₂: Number of kg of ingredient of type B

Minimize	$C = 12x_1 + 8x_2$		0.5
Subject to	$x_1 + x_2 \ge 100$	(Weight Constraint)	0.5
	$0.30x_1 + 0.10x_2 \ge 15$	(Nitrogen Constraint)	0.5
	$0.10x_1 + 0.05x_2 \ge 8$	(Phosphate Constraint)	0.5
	$0.20x_1 + 0.40x_2 \ge 25$	(Bone Meal Constraint)	0.5
	$x_1, x_2 \ge 0$	(Non- Negativity Constraint)	0.5

(b) Corner Point Soluton:

The corner points of the area of feasible solution in the graph below is given as:

$(\mathbf{x}_1,\mathbf{x}_2)$	$C = 12x_1 + 8x_2$	
(0 , 160)	1,280	0.25x2
(60 , 40)	1,040	0.25x2
(125,0)	1,500	0.25x2
(75 , 25)	1,100	0.25x2
Hence the total cost is	minimized at $x_1 = 60 \& x_2 = 40$	0.5

Marks Distribution:

0.5 mark each for drawing of 5 correct lines (0.5 x 5)	= 2.5
Identification of four corner points (0.25 mark x 4)	= 1.0
Identification of feasible region	= <u>0.5</u>
	<u>4.0</u>

THE END